Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1331322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487542

RESUMO

Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.


Assuntos
Neuroblastoma , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Bussulfano , Quimiocinas , Receptores de Quimiocinas
2.
Front Immunol ; 14: 1294555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022523

RESUMO

The application of immunotherapies such as chimeric antigen receptor (CAR) T therapy or bi-specific T cell engager (BiTE) therapy to manage myeloid malignancies has proven more challenging than for B-cell malignancies. This is attributed to a shortage of leukemia-specific cell-surface antigens that distinguish healthy from malignant myeloid populations, and the inability to manage myeloid depletion unlike B-cell aplasia. Therefore, the development of targeted therapeutics for myeloid malignancies, such as acute myeloid leukemia (AML), requires new approaches. Herein, we developed a ligand-based CAR and secreted bi-specific T cell engager (sBite) to target c-kit using its cognate ligand, stem cell factor (SCF). c-kit is highly expressed on AML blasts and correlates with resistance to chemotherapy and poor prognosis, making it an ideal candidate for which to develop targeted therapeutics. We utilize γδ T cells as a cytotoxic alternative to αß T cells and a transient transfection system as both a safety precaution and switch to remove alloreactive modified cells that may hinder successful transplant. Additionally, the use of γδ T cells permits its use as an allogeneic, off-the-shelf therapeutic. To this end, we show mSCF CAR- and hSCF sBite-modified γδ T cells are proficient in killing c-kit+ AML cell lines and sca-1+ murine bone marrow cells in vitro. In vivo, hSCF sBite-modified γδ T cells moderately extend survival of NSG mice engrafted with disseminated AML, but therapeutic efficacy is limited by lack of γδ T-cell homing to murine bone marrow. Together, these data demonstrate preclinical efficacy and support further investigation of SCF-based γδ T-cell therapeutics for the treatment of myeloid malignancies.


Assuntos
Leucemia Mieloide Aguda , Camundongos , Animais , Ligantes , Receptores Proteína Tirosina Quinases , Proteínas Proto-Oncogênicas c-kit/genética , Imunoterapia Adotiva , Fator de Células-Tronco
3.
Cell Rep Med ; 4(6): 101091, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343516

RESUMO

GD2-targeting immunotherapies have improved survival in children with neuroblastoma, yet on-target, off-tumor toxicities can occur and a subset of patients cease to respond. The majority of neuroblastoma patients who receive immunotherapy have been previously treated with cytotoxic chemotherapy, making it paramount to identify neuroblastoma-specific antigens that remain stable throughout standard treatment. Cell surface glycoproteomics performed on human-derived neuroblastoma tumors in mice following chemotherapy treatment identified protein tyrosine kinase 7 (PTK7) to be abundantly expressed. Furthermore, PTK7 shows minimal expression on pediatric-specific normal tissues. We developed an anti-PTK7 chimeric antigen receptor (CAR) and find PTK7 CAR T cells specifically target and kill PTK7-expressing neuroblastoma in vitro. In vivo, human/murine binding PTK7 CAR T cells regress aggressive neuroblastoma metastatic mouse models and prolong survival with no toxicity. Together, these data demonstrate preclinical efficacy and tolerability for targeting PTK7 and support ongoing investigations to optimize PTK7-targeting CAR T cells for neuroblastoma.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Humanos , Criança , Animais , Camundongos , Neuroblastoma/terapia , Neuroblastoma/patologia , Imunoterapia , Receptores de Antígenos Quiméricos/genética , Proteínas Tirosina Quinases
4.
Front Oncol ; 12: 903830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747808

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups - Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.

5.
Cancer Res Commun ; 2(12): 1569-1578, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36970726

RESUMO

The high frequency of aberrant PI3K pathway activation in hormone receptor-positive (HR+) breast cancer has led to the development, clinical testing, and approval of the p110α-selective PI3K inhibitor alpelisib. The limited clinical efficacy of alpelisib and other PI3K inhibitors is partially attributed to the functional antagonism between PI3K and estrogen receptor (ER) signaling, which is mitigated via combined PI3K inhibition and endocrine therapy. We and others have previously demonstrated chromatin-associated mechanisms by which PI3K supports cancer development and antagonizes ER signaling through the modulation of the H3K4 methylation axis, inhibition of KDM5A promoter H3K4 demethylation and KMT2D/MLL4-directed enhancer H3K4 methylation. Here we show that inhibition of the H3K4 histone methyltransferase MLL1 in combination with PI3K inhibition impairs HR+ breast cancer clonogenicity and cell proliferation. While combined PI3K/MLL1 inhibition reduces PI3K/AKT signaling and H3K4 methylation, MLL1 inhibition increases PI3K/AKT signaling through the dysregulation of gene expression associated with AKT activation. These data reveal a feedback loop between MLL1 and AKT whereby MLL1 inhibition reactivates AKT. We show that combined PI3K and MLL1 inhibition synergizes to cause cell death in in vitro and in vivo models of HR+ breast cancer, which is enhanced by the additional genetic ablation of the H3K4 methyltransferase and AKT target KMT2D/MLL4. Together, our data provide evidence of a feedback mechanism connecting histone methylation with AKT and may support the preclinical development and testing of pan-MLL inhibitors. Significance: Here the authors leverage PI3K/AKT-driven chromatin modification to identify histone methyltransferases as a therapeutic target. Dual PI3K and MLL inhibition synergize to reduce clonogenicity and cell proliferation, and promote in vivo tumor regression. These findings suggest patients with PIK3CA-mutant, HR+ breast cancer may derive clinical benefit from combined PI3K/MLL inhibition.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Mama/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cromatina , Histona-Lisina N-Metiltransferase/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...